## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.04$
$w R\left(F^{2}\right)=0.11$
$S=1.03$
1987 reflections
118 parameters
H atoms riding

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.043 P)^{2}\right. \\
&+0.245 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

| $\mathrm{Cl1}-\mathrm{C} 3$ | $1.723(2)$ | $\mathrm{Cl} 2-\mathrm{C} 6$ | $1.713(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{OI}-\mathrm{C} 7$ | $1.185(3)$ | $\mathrm{O} 3-\mathrm{C} 8$ | $1.186(3)$ |
| $\mathrm{O} 2-\mathrm{C} 8$ | $1.389(3)$ | $\mathrm{O} 2-\mathrm{C} 7$ | $1.393(3)$ |
| $\mathrm{Cl}-\mathrm{C} 7$ | $1.478(3)$ | $\mathrm{C} 2-\mathrm{C} 8$ | $1.477(3)$ |
| $\mathrm{Cl}-\mathrm{C} 6$ | $1.380(3)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.376(3)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.384(4)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.389(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.380(3)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.376(4)$ |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$ | $121.1(2)$ | $\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$ | $121.3(2)$ |
| $\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$ | $117.6(2)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $117.9(2)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $121.5(2)$ | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $120.6(2)$ |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$ | $107.9(2)$ | $\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 8$ | $107.8(2)$ |
| $\mathrm{O} 2-\mathrm{C} 7-\mathrm{Cl}$ | $106.8(2)$ | $\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 2$ | $107.0(2)$ |
| $\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$ | $120.9(2)$ | $\mathrm{O} 3-\mathrm{C} 8-\mathrm{O} 2$ | $121.0(2)$ |
| $\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 7$ | $110.5(2)$ |  |  |

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: TEXSAN. Program(s) used to refine structure: SHELXTL (Sheldrick, 1995). Molecular graphics: SHELXTL and TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK 1409). Services for accessing these data are described at the back of the journal.

## References

Bates, R. B. \& Cutler, R. S. (1977). Acta Crist. B33, 893-895.
Berkovitch-Yellin, Z. \& Leiserowitz, L. (1984). Acta Crysı. B40, 159165.

Bocelli, G. \& Cantoni, A. (1995). Acta Crusi. C51, 2652-2654.
Britton, D. (1992). Acta Crist. C48, 1283-1285.
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius. Delft, The Netherlands.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ojala, C. R., Ojala, W. H., Britton, D. \& Gougoutas, J. Z. (1998). Unpublished work.
Pauling, L. (1960). The Nalure of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Rudman, R. (1971). Acta Cryst. B27, 262-269.
Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104. 5063-5070.

Acta Cryst. (1998). C54, 1894-1898

# 17,17-Ethylenedioxyandrost-4-ene-3,6-dione and 17,17-Ethylenedioxyandrosta-1,4-diene-3,6-dione 

Addlagatta Anthony, ${ }^{a}$ Mariusz Jaskolski, ${ }^{b}$ Ashwini Nangia and Gautam R. Desiraju ${ }^{a}$<br>${ }^{a}$ School of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and ${ }^{b}$ Institute of Bioorganic Chemistry; Polish Academy of Sciences, and Department of Crystallography, Faculty of Chemistry: A. Mickiewic: University: Poznan, Poland. E-mail: ansc@uohyd.ernet.in<br>(Received 17 March 1998; accepted 15 June 1998)

## Abstract

The crystal structures of 17,17 -ethylenedioxyandrost-4-ene-3,6-dione, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$, and 17,17-ethylenedioxy-androsta-1,4-diene-3,6-dione, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$, intermediates in the synthesis of heteroandrogenic aromatase inhibitors, have been determined. Both structures are stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, highlighting the importance of weak interactions in influencing packing motifs in general and the conformation of the flexible dioxolane ring in particular.

## Comment

The presence of a 4-ene-3,6-dione moiety in the $A / B$ rings of a steroid skeleton is known to enhance the biological activity of such steroids, notably as aromatase inhibitors for the treatment of estrogendependent breast cancer (Numazawa et al., 1993). The title compounds, 17,17-ethylenedioxyandrost-4-ene-3,6dione, (I), and 17,17-ethylenedioxyandrosta-1,4-diene-3,6-dione, (II), were synthesised for elaboration to more complex $A / B / D$ ring androgens and $A$-ring heteroandrogens (Nangia \& Anthony, 1996, 1997). The conjugation in the enone (or enedione) portion of the molecule plays an important role in determining the stability of various $A$-ring conformations and in turn is able to influence the steroid-receptor interactions that control hormonal responses (Duax et al., 1994).

(I)

(II)

In compound (I) (Fig. 1), ring $A$ adopts the $1-\alpha$ sofa conformation, ring $B$ adopts a half-chair conformation,
while rings $C$ and $D$ are in chair and envelope conformations, respectively. In ring $A$, the $\mathrm{C} 4=\mathrm{C} 5$ double bond is polarized towards the C3 carbonyl rather than towards the C6 carbonyl atom [C3-O3 1.214(3), C3-C4 1.469 (4), C4-C5 1.330 (4), C5-C6 1.502 (4) and C6-O6 1.197 (3) $\AA$ ]. In ring $D, \mathrm{C} 13$ is 0.674 (4) $\AA$ above the plane containing the four remaining atoms (C14-C17). The dioxolane ring is in an envelope conformation, with C21 lying 0.548 (5) A away from the plane containing the other four atoms ( $\mathrm{O} 20, \mathrm{C} 17, \mathrm{O} 23$ and C22).


Fig. 1. ORTEPII plot (Johnson. 1976) and numbering scheme for encdione (I); displacement cllipsoids are drawn at the $50 \%$ probability level for non-H atoms.

In compound (II) (Fig. 2), ring A adopts a planar conformation with the weighted average absolute torsion angle being $1.3(6)^{\circ}$. The conformations of rings $B, C$ and $D$ in (II) are similar to those in (I). In (II), atoms C13 and C21 are located 0.686 (6) and $0.208(11) \AA$ away from the planes of the four remaining atoms of the $D$ and dioxolane rings, respectively. In contrast to (I), the $\mathrm{C} 4=\mathrm{C} 5$ double bond in (II) is polarized towards the C 6 carbonyl atom, while the $\mathrm{Cl}=\mathrm{C} 2$ double bond is polarized towards the C 3 carbonyl atom [ $\mathrm{Cl}-\mathrm{C} 2$ 1.313 (5), C2-C3 1.444(6), C3-O3 1.220(5), C3C4 1.466 (6), C4-C5 1.331 (5), C5-C6 1.491 (5) and C6-O6 $1.207(5) \AA$ A]. The angle formed by the mean


Fig. 2. ORTEPII plot (Johnson, 1976) and numbering scheme for dienedione (II): displacement ellipsoids are drawn at the $50 \%$ probability level for non- H atoms. Compare the larger displacement of C21 and C22 with those in Fig. 1.
plane of ring $A$ with the mean plane passing through rings $B, C$ and $D$ is $34.95(9)^{\circ}$ in (II), while it is $20.75(9)^{\circ}$ in (I), suggesting that the molecular skeleton is more bent in (II) than in (I).
There are no strong hydrogen-bonding groups in (I) and (II); the crystal structures are stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju, 1996; Steiner, 1996), some of which are listed in Tables 2 and 4. The molecules in enedione (I) are oriented along [001], pack in the crystal in a head-to-tail fashion and are connected by C-H $\cdots$ O hydrogen bonds (Fig. 3). C4H connects to one of the dioxolane O atoms ( $\mathrm{H} \cdots \mathrm{O}$ $2.57 \AA$ ) forming a chain along [100] between screwrelated molecules. Another hydrogen-bonded chain runs along [001], formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds between $\mathrm{C} 2-$ H and $\mathrm{O} 3(\mathrm{H} \cdots \mathrm{O} 2.75 \AA)$.


Fig. 3. Packing diagram of (I) down [100] showing the zigzag C $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded chain along [001]. Another $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (not shown) runs along [100] between the C4H and the O 23 atoms. The hydrogen bonds are shown as dashed lines.

In (II), molecules are close-packed along [100] and utilize the bent shape of the skeleton in such a way that the head and tail portions of one molecule fit into the concave cavities of adjacent screw-related molecules (Fig. 4). Molecules related by translation along [100] are connected by a chain of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between $\mathrm{C} 12-\mathrm{H}$ and O 6 atoms ( $\mathrm{H} \cdots \mathrm{O} 2.69 \AA$ ). In effect, the O 6 atom is hydrogen bonded to ring $C$ in (II), while it is bonded to the $A$ and dioxolane rings in (I).


Fig. 4. Packing diagram of (II) down [100] showing the head-totail orientation of the bow-shaped molecules in a close-packed arrangement. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

A change in the $A$-ring functionality in (I) and (II) was found to have little effect on the conformation of rings $B, C$ and $D$. The $B / C / D$ ring system of the two compounds could be superimposed on each other with a very small r.m.s. deviation ( $0.029 \AA$ ). The conformational flexibility in the dioxolane ring portion of the molecules was examined computationally (Cerius ${ }^{2}$; Molecular Simulations, 1998). A 'systematic search' of the possible conformations in (I) and (II) was carried out by the breaking and recomposition of one bond, chosen arbitrarily, in each of the five rings ( $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 6-$ C7, C11-C12, C15-C16 and C21-C22) (Guarna et al., 1997). The overlay plots ( 100 conformations, $\Delta E<$ $13 \mathrm{~kJ} \mathrm{~mol}^{-1}$; Fig. 5) show that the dioxolane ring has far greater flexibility in conformational space compared with the rest of the steroid skeleton. Furthermore, it appears that ring $A$ can adopt more conformations in enedione (I) than in dienedione (II); this could be relevant in binding to the receptor (Duax et al., 1994). That the conformations adopted by the dioxolane ring in (I) and (II) are different could be a result of the low energy barrier to conformational changes and the different packing motifs in the two structures. The atomic displacement parameters of the C20 and C21 atoms are larger in (II) compared with those in (I); this is ascribed to differences in their hydrogen-bonding patterns (Steiner, 1997). In (I), both the H atoms of C 21 are hydrogen bonded to the O 3 and O 23 acceptor atoms of distinct screw-related molecules and, additionally, the

H atom of C 22 is bonded to $\mathrm{O} 6(\mathrm{C} 21-\mathrm{H} \cdots \mathrm{O} 32.78$, $\mathrm{C} 21-\mathrm{H} \cdots \mathrm{O} 232.77$ and $\mathrm{C} 22-\mathrm{H} \cdots \mathrm{O} 62.80 \AA$ ). In (II), on the other hand, there is only a very long contact between $\mathrm{C} 22-\mathrm{H}$ and $\mathrm{O} 3(\mathrm{H} \cdots \mathrm{O} 2.99 \AA)$. A comparison of the crystal structures of steroids (I) and (II) underscores the importance of weak hydrogen bonding in the conformation and hence the binding characteristics of these biomolecules (Wahl \& Sundaralingam, 1997).


Fig. 5. Conformations of ( $a$ ) (I) and ( $b$ ) (II) generated through the 'systematic search' module in Cerius ${ }^{\prime}$ (Molecular Simulations. 1998). Notice that a large number of dioxolane ring conformations are possible in both molecules.

## Experimental

Compounds (I) and (II) were prepared according to the literature procedures of Nangia \& Anthony (1997).

## Compound (I)

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$
$M_{r}=344.43$
Orthorhombic
$P 2,2,2$,
$a=8.162(2) \AA$
$b=9.919(2) \AA$
$c=22.021$ (4) $\AA$
$V=1782.8(7) \AA^{3}$
$Z=4$
$D_{x}=1.283 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 52
reflections
$\theta=7.5-22.9^{\circ}$
$\mu=0.087 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.6 \times 0.5 \times 0.4 \mathrm{~mm}$
Light yellow
$D_{m}$ not measured

## Data collection

Kuma KM-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: none
1929 measured reflections
1929 independent reflections 1466 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.54^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 12$
$l=0 \rightarrow 26$
2 standard reflections every 100 reflections intensity decay: $<1.7 \%$

## Refinement

Refinement on $F^{2}$
$(\Delta / \sigma)_{\max }<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.098$
$S=1.064$
1926 reflections
226 parameters
H atoms fixed
$w=1 /\left[\sigma^{2}\left(F_{\rho}^{2}\right)+(0.043 P)^{2}\right.$ $+0.3994 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

| $\mathrm{C} 1-\mathrm{C} 2$ | $1.527(4)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.330(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{C} 10$ | $1.531(4)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.502(4)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.80(4)$ | $\mathrm{C} 5-\mathrm{C} 19$ | $1.514(4)$ |
| $\mathrm{C} 3-\mathrm{O} 3$ | $1.214(3)$ | $\mathrm{C} 6-\mathrm{O} 6$ | $1.197(3)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.469(4)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.488(3)$ |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10$ | $114.4(2)$ | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $122.9(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$ | $112.5(2)$ | $\mathrm{C} 4-\mathrm{C}-\mathrm{C} 6$ | $117.8(2)$ |
| $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$ | $120.9(3)$ | $\mathrm{O}-\mathrm{C} 6-\mathrm{C} 7$ | $121.8(3)$ |
| $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$ | $122.9(3)$ | $\mathrm{O} 6-\mathrm{C}-\mathrm{C} 5$ | $121.0(2)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $116.2(2)$ | $\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$ | $117.0(2)$ |

Table 2. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$ for (I)

| D-H. . A | D-H | H...A | D...A | D-H. . A |
| :---: | :---: | :---: | :---: | :---: |
| C1-H11...O6' | 0.97 | 2.71 | 3.345 (4) | 124 |
| $\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{O} 3^{\prime \prime}$ | 0.97 | 2.75 | 3.681 (3) | 162 |
| C4-H41.. $\mathrm{O}^{\prime \prime}{ }^{\prime \prime \prime}$ | 0.93 | 2.57 | 3.480 (4) | 167 |
| C16-H161...O3 ${ }^{\prime \prime}$ | 0.97 | 2.88 | 3.682 (4) | 140) |
| C16-H162 . OO3'1 | 0.97 | 2.79 | 3.603 (4) | 141 |
| C19-H193...O3" | 0.96 | 2.87 | 3.607 (2) | 134 |
| C21-H211... $\mathrm{O}^{3}$ | 0.97 | 2.78 | 3.556 (5) | 138 |
| $\mathrm{C} 21-\mathrm{H} 211 \cdots \mathrm{O}^{\text {¹ }}$ | 0.97 | 2.77 | 3.459 (4) | 128 |
| C22-H221...O6 ${ }^{\text {² }}$ | 0.97 | 2.80 | 3.551 (1) | 135 |

Symmery codes: (i) $1+x, y, z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y,-z ;$ (iv) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$ : (v) $\frac{1}{2}+x, \frac{3}{2}-y,-z ;$ (vi) $1-x, \frac{1}{2}+y,-\frac{1}{2}-z$.

## Compound (II)

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$
$M_{r}=342.42$
Orthorhombic
$P 2$ | 2 , 2
$a=9.854$ (2) $\AA$
$b=10.860(2) \AA$
$c=16.524$ ( 3 ) $\AA$
$V=1768.3(6) \AA^{3}$
$Z=4$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Kuma KM-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
1810 measured reflections
1810 independent reflections 1097 reflections with

$$
I>2 \sigma(I)
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 53 reflections
$\theta=7.5-21.5^{\circ}$
$\mu=0.088 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.55 \times 0.40 \times 0.25 \mathrm{~mm}$
Light yellow
$\theta_{\text {max }}=25.04^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 12$
$l=0 \rightarrow 19$
2 standard reflections every 100 reflections intensity decay: $<1 \%$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.115$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.153 \mathrm{e} \mathrm{A}^{-3}$
$S=1.035$
1807 reflections
226 parameters
H atoms fixed
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0474 P)^{2}\right.$ $+0.4925 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 3. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$ for (II)

| $\mathrm{C} 1-\mathrm{C} 2$ | $1.313(5)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.331(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 1-\mathrm{ClO}$ | $1.487(5)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.491(5)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.444(6)$ | $\mathrm{C} 5-\mathrm{C} 10$ | $1.507(5)$ |
| $\mathrm{C} 3-\mathrm{O} 3$ | $1.220(5)$ | $\mathrm{C} 6-\mathrm{O} 6$ | $1.207(5)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.466(6)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.488(5)$ |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl} 0$ | $125.9(4)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $116.0(4)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $121.9(4)$ | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $121.6(4)$ |
| $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$ | $122.5(4)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $119.5(3)$ |
| $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$ | $121.5(4)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$ | $124.3(4)$ |

Table 4. Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$ for (II)

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots \cdot A$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C} 4-\mathrm{H} 41 \cdots \mathrm{O} 2)^{\prime}$ | 0.93 | 2.90 | $3.795(5)$ | 161 |
| $\mathrm{C} 7-\mathrm{H} 71 \cdots \mathrm{O}^{\prime \prime}$ | 0.97 | 2.77 | $3.682(6)$ | 157 |
| $\mathrm{C} 11-\mathrm{H} 112 \cdots \mathrm{O}^{\prime \prime \prime}$ | 0.97 | 2.82 | $3.732(6)$ | 156 |
| $\mathrm{C} 12-\mathrm{H} 122 \cdots \mathrm{O}^{\prime \prime}$ | 0.97 | 2.69 | $3.522(5)$ | 144 |
| $\mathrm{C} 14-\mathrm{H} 141 \cdots \mathrm{O}^{\prime \prime}$ | 0.98 | 2.78 | $3.675(5)$ | 153 |
| $\mathrm{C} 19-\mathrm{H} 191 \cdots \mathrm{O}^{\prime \prime}$ | 0.96 | 2.72 | $3.499(5)$ | 139 |
| $\mathrm{C} 22-\mathrm{H} 221 \cdots 3^{\prime \prime}$ | 0.97 | 2.99 | $3.596(8)$ | 122 |

Symmetry codes: (i) $-1-x, y-\frac{1}{2},-\frac{1}{2}-z$; (ii) $-1-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (iii) $\frac{1}{2}+x,-\frac{3}{2}-y,-1-z:$ (iv) $1^{2}+x, y, z ;$ (v) $x-\frac{1}{2},-\frac{1^{2}}{2}-y,-1-z$; (vi) $1+x, 1+y, z$.

For both compounds, data collection: KM-4 User's Guide (Kuma, 1989); cell refinement: KM-4 User's Guide; data reduction: KM-4 User's Guide; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976) and PLUTO (Motherwell \& Clegg, 1978); software used to prepare material for publication: SHELXL93.

AA thanks the CSIR for fellowship support. AN and GRD acknowledge financial support from the DST (SP/S1/G-25/91). This work was made possible in part by the Indo-Polish Cooperation Programme (INT/POL/POC/P-22/96). The research of MJ was supported by the HHMI.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1285). Services for accessing these data are described at the back of the journal.

## References

Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Duax. W. L.. Griffin. J. F. \& Ghosh, D. (1994). In Structure Correlation, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz, pp. 605-633. New York: VCH.
Guarna, A., Occhianti, E. G. \& Machetti, F. (1997). J. Med. Chem. 40, 3466-3477.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Kuma (1989). KM-4 User's Guide. Version 3.1. Kuma Diffraction, Wroclaw, Poland.
Molecular Simulations (1998). Cerius ${ }^{2}$. Version 3.5. Molecular Simulations, 9685 Scranton Road, San Diego. CA 92121-3752. USA. and 240/250 The Quorum, Barnwell Road, Cambridge CB5 8RE, England.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Cņstal Structures. University of Cambridge, England.
Nangia, A. \& Anthony, A. (1996). Synth. Commun. 26, 225-236.
Nangia, A. \& Anthony, A. (1997). Indian J. Chem. 36B, 1113-1118.
Numazawa, M.. Mutsumi, A., Asano, N. \& Ito, Y. (1993). Steroids. 58, 40-46.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crvstal Structures. University of Göttingen, Germany.
Steiner, T. (1996). Cryst. Rev. 6, 1-57.
Steiner, T. (1997). Chem. Commun. pp. 727-729.
Wahl, M. C. \& Sundaralingam, M. (1997). Trends Biochem. Sci. 22. 97-102.

Acta Cryst. (1998). C54, 1898-1900

## 5 $\beta$-Androstan-3,17-dione

Addlagatta Anthony, ${ }^{a}$ Mariusz Jaskolski, ${ }^{b}$ Ashwini Nangia and Gautam R. Desiraju ${ }^{a}$
${ }^{a}$ School of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and ${ }^{b}$ Institute of Bioorganic Chemistry: Polish Academy of Sciences, and Department of Crustallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland. E-mail: ansc@uohyd.ernet.in
(Received 6 April 1998; accepted 8 June 1998)


#### Abstract

The title compound, $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$, has the $5 \beta$ configuration and a bowing angle of $71.76(5)^{\circ}$ at the $A / B$ ring junction. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and van der Waals interactions.


## Comment

The configuration at C 5 is known to play an important role in the hormonal responses of steroids (Lawrence et al., 1986). The activity of steroid analogues and their ability to bind to the receptor varies depending on whether the configuration at C 5 is $\alpha$ or $\beta$, because of differences in the overall shape of the two epimers. The $5 \alpha$ steroids are flat, whereas the $5 \beta$ epimers are bent at the $A / B$ ring junction. $5 \alpha$ - and $5 \beta$-androstan- 3,17 -dione are important compounds in steroid metabolism and their biological activity has been studied extensively. In the Cambridge Structural Database (CSD; Allen \& Kennard, 1993), two crystal structures of $5 \alpha$-androstan-

3,17-dione [CSD refcodes: ANDION10 (Coiro et al., 1973) and ANDRDO (Peck et al., 1974)] and the cell parameters for the 53-epimer [CSD refcode: ZZZPDK (Norton et al., 1962)] are reported. Here we report the crystal structure of 53-androstan-3,17-dione, (I).

(1)

Ring $A$ is in a half-chair conformation, rings $B$ and $C$ are in a chair conformation and ring $D$ adopts the commonly found $14 \alpha$-envelope conformation (Duax \& Norton, 1975; Paixão et al., 1998). The bowing angle in (I) [71.76(5) ${ }^{\circ}$ ] is comparable to the corresponding angles found in other $5 \beta$-steroids reported recently [81.53 (9) and 81.97 (9) (Andrade et al., 1997) and $58.91(6)^{\circ}$ (Ramos Silva et al., 1996)]. There are three conformers of $5 \alpha$-androstan-3,17-dione available for comparison with the $5 \beta$-epimer (I): ANDION10 and two symmetry-independent molecules of ANDRDO. The overlay plot of (I) with the three $5 \alpha$-androstandione conformers shows that the $B, C$ and $D$ rings overlap with very low r.m.s. deviations ( $0.082,0.059$ and $0.066 \AA$ ), while the conformational flexibility in ring $A$ is considerable.


Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as spheres of an arbitrary radius.

The crystal structure of (I) (Fig. 2) is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju, 1996). A hydrogen-bonded chain runs along [010], involving $\mathrm{C} 73-\mathrm{H}$ and O 3 atoms ( $\mathrm{H} \cdots \mathrm{O} 2.68 \AA, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ $130^{\circ}$ ) of translation-related molecules. Additionally, the $\mathrm{C} 53-\mathrm{H}$ and $\mathrm{C} 19-\mathrm{H}$ donors are hydrogen bonded along [001] to O3 of a screw-related molecule ( $2.73 \AA$, $152^{\circ} ; 2.69 \AA, 147^{\circ}$ ). The C3 carbonyl-O atom thus

